Abstract

The main principles of green chemistry and engineering were extended to pharmaceutical formulations to prepare eco-friendly surfactant-free dry emulsion tablets (SFDETs) devoid of solvents or synthetic surfactants. Surfactant-free emulsions were stabilized by in situ cyclodextrins/sweet almond oil inclusion complexes and assessed for creaming stability. Formulation variables' effects on the emulsion droplet size and tadalafil solubility were studied using 22 × 3 factorial design. The emulsions exhibited nanometric and micrometric droplet sizes. The optimized nanoemulsion was loaded with tadalafil, morphologically evaluated, and utilized for preparing lyophilized SFDETs using different gelatin/Pearlitol® ratios. The tablets were characterized and the selected formulation was subjected to storage for 6months. The emulsions prepared using β-cyclodextrin or higher concentrations of α-cyclodextrin showed little or no phase separation. Statistical analysis revealed significant influence of cyclodextrin type and amount on droplet size, while cyclodextrin type and oil volume exhibited significant effect on drug solubility. Morphological examination revealed non-aggregated spherical emulsion droplets. The prepared tablets showed satisfactory mechanical strength, short disintegration times, and enhanced drug dissolution. The selected tablet formulation (gelatin/Pearlitol®, 4:2 w/w) showed acceptable stability at 25°C/60% relative humidity. An overall conclusion claims that the absence of surfactants is expected to minimize the proposed tablets' in vivo toxicity and environmental concerns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call