Abstract

Spirulina platensis, a type of cyanobacterium (blue-green algae), is well known for its rich abundant nutritional profile and bioactive compounds, which contribute to various biological functions within the human body. The application of nanotechnology toSpirulina has the potential to further enhance its biological activity in biomedical assays. This study aimed to utilize Spirulina platensisfor the green synthesis of cerium oxide nanoparticles (CeO-NPs) and evaluate their physiochemical properties. The research will assess the antibacterial and anti-inflammatory efficacy of the synthesized nanoparticles and explore the underlying mechanisms of action. Spirulinaplatensis-mediatedcerium oxide nanoparticlesare synthesized by thegreen synthesis (titration method). The biosynthesized CeO-NPs are characterized by using techniques such as UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX). Antibacterial activity was carried out by the agar-well diffusion method and anti-inflammatory activity was carried out by the albumin denaturation method. The green synthesis of cerium oxide nanoparticles (CeO-NPs) using Spirulina, a sustainable and eco-friendly method has potential application in antibacterial and anti-inflammatory therapies. This study focuses on the green synthesis of CeO-NPs and characterizes them by using UV-Vis, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), SEM, and EDX. The UV-vis analysis confirmed the presence of CeO-NPs at a wavelength of 320 nm. FT-IR reveals four functional groups, such as C-O, N-O, and C=Cstretches. XRD analysis showed higher crystallineand less amorphous content. SEM and EDX spectra were utilized to confirm the morphology (agglomerated square shape) and the elemental composition [Ce, O, C]in the CeO-NPs. The antibacterial activity was evaluated against multidrug-resistant (MDR) clinical strains and the anti-inflammatory activity revealed significant activity in a dose-dependent manner. This study concluded that Spirulina-mediated CeO-NPs have potential as a drug in biomedical assays. Further in vitro and in vivo analysis is required to fully confirm their viability as a potential drug.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.