Abstract

Lightweight, high-temperature-resistant carbon-bonded carbon fiber (CBCF) composites with excellent thermal insulation properties are desirable materials for thermal protection systems in military and aerospace applications. Here, glucose was introduced into the polyacrylamide hydrogel to form the glucose-polyacrylamide (Glu-PAM) hydrogel. The CBCF composites were prepared using the Glu-PAM hydrogel as a brand-new binder, and the synergistic effect between glucose and acrylamide was investigated. The results showed the Glu-PAM hydrogel could limit the foaming of glucose and enhance the carbon yield of glucose. Meanwhile, the dopamine-modified chopped carbon fiber could be uniformly mixed by high-speed shearing to form a slurry with the Glu-PAM hydrogel. Finally, the slurry was successfully extruded and molded to prepare CBCF composites with a density of 0.158~0.390 g cm-3 and excellent thermal insulation performance and good mechanical properties. The compressive strength of CBCF composites with a density of 0.158 g cm-3 in the Z direction is 0.18 MPa, and the thermal conductivity in the Z direction at 25 °C and 1200 °C is 0.10 W m-1 k-1 and 0.20 W m-1 k-1, respectively. This study provided an efficient, environment-friendly, and cost-effective strategy for the preparation of CBCF composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.