Abstract

Biomaterials offer great potential for enhancing the performance of humidity sensors, which play a critical role in controlling moisture levels across different applications. By utilizing environmentally friendly, sustainable, and cost-effective biomaterials, we can improve the manufacturing process of these sensors while reducing our environmental impact. In this study, we present a high-performance humidity sensor that utilizes purple sweet potato peel (PSPP) as both the substrate and sensing layer. The PSPP is chosen for its polar hydrophilic functional groups, as well as its environmentally friendly nature, sustainability, and cost-effectiveness. Remarkably, this humidity sensor does not require an external substrate. It exhibits a wide detection range of 0 to 85% relative humidity at various operating frequencies (100 Hz, 1 kHz, and 10 kHz) in ambient temperature, demonstrating its effectiveness in responding to different humidity levels. The sensor achieves a high sensitivity value of 183.23 pF/%RH and minimal hysteresis of only 5% at 10 kHz under ambient conditions. It also boasts rapid response and recovery times of 1 and 2 s, respectively, making it suitable for use in high-end electronic devices. Moreover, the sensor’s applications extend beyond environmental monitoring. It has proven effective in monitoring mouth and nasal breathing, indicating its potential for respiratory monitoring and noncontact proximity response. These findings suggest that sweet potato peel material holds great promise as a highly stable, non-toxic, biodegradable, cost-effective, and environmentally friendly option for various domains, including healthcare monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call