Abstract

Using a semiconductor catalyst with sunlight can make the photodegradation of pollutants an economically viable process since solar energy is an abundant natural energy source. Solar photocatalysis can provide clean and green eco-friendly technology for the analysis of industrial effluents. Photocatalytic deterioration of the aqueous solution of malachite green oxalate dye (MGO dye) was studied using gelatin–cerium–copper sulphide (Ge-Ce-CuS) nanoparticles under the sunlight source. The nanoparticles were synthesised by a hydrothermal process. The structural properties of the nanoparticles have been characterised by XRD, SEM, EDS, HR-TEM, and XPS. The effects of the initial concentration of dye, dosage of photocatalyst, reaction time, and pH on dye removal efficiency were studied. The mineralisation of MGO dye has been confirmed by chemical oxygen demand (COD) measurements. The reusability of the catalyst was proved. The antibacterial activity has been studied for the synthesised nanoparticles. The higher photocatalytic degradation efficiency of Ge-Ce-CuS is explained by its reduced electron-hole recombination and sunlight activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.