Abstract

Petroleum oil contaminants have become severe ecological problems and negatively impact human health. It is, therefore, imperative to identify environmentally friendly approaches to remediate oil-polluted environments. Therefore, bacterial oil degradation stimulated with a nitrogen source under optimum conditions was assessed in this study. Based on the 16S rRNA analysis, strain ODB H32 recovered from oil-based mud of some petroleum drilling sites in the western desert, Egypt, was identified as Enterobacter hormaechei. The metabolic fingerprint of E. hormaechei, achieved using BIOLOG GEN III, revealed that the strain could utilize diverse carbon and chemical sources. Also, E. hormaechei could biodegrade 0.6% of oil under optimized pH (7.0) and temperature (30 °C) conditions. Analyzing different nitrogen stimulants revealed that peptone ˃ yeast extract ˃ ammonium nitrate ˃ urea enhanced the growth of E. hormaechei on mineral salts medium (MSM). Analysis by capillary gas chromatography revealed maximum (70.7%) degradation of peptone by E. hormaechei, indicating that peptone was a good biostimulant for oil degradation. These findings recommend using biostimulated E. hormaechei as an eco-friendly approach for remediating oil-polluted environments, under optimized conditions, especially in arid regions like the western desert of Egypt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.