Abstract

Biofouling, which comprises the absorption of proteins and the adhesion of bacteria to the surface of living entities, is a severe concern for the maritime sector since it ultimately leads to hydrodynamic drag, resulting in a higher increase in fuel consumption. As a result, polymer resins are crucial in the marine sector for anti-biofouling coatings. In this work, the poly(caprolactone-ethylene glycol-caprolactone)-polyurethane (PECL-PU) are prepared through ε -caprolactone (CL), poly(ethylene glycol) (PEG), 4,4′-methylene bis(cyclohexyl isocyanate ) and 1,4 butanediol. Our study demonstrate that the PECL-PU copolymer degraded in artificial seawater (5.21%), enzymatic solution (12.63%), and seawater (13.75%) due to the presence of PEG segments in the laboratory-based test under static condition. Because the addition of PEG segments are increased the polymer's amorphous area and decreased the crystallization of the polycaprolactone (PCL) in the copolymer, as demonstrated by differential scanning calorimetry, X-ray diffraction, and water contact angle studies. Therefore, the hydrolysis rates of PECL-PU were higher than the caprolactone-co-polyurethane (CL-PU). The antifouling test showed that PECL-PU3 copolymer had about 90.29% protein resistance, 85.2% Escherichia coli ( E. coli ) reduction and 94.61% marine diatom Navicula incerta reduction comparison to the control. We have developed an eco-friendly and inexpensive promising degradable polyurethane for reduction of bacterial biofilm, which can preserve the formation of biofouling on marine coating under practical sea conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call