Abstract
Here we report the fabrication of high-performance all-carbon temperature and infrared (IR) sensors with a solvent-free multiwalled carbon nanotube (MWCNT) trace as the sensing element and commercial graphite pencil trace as the electrical contact on recyclable and biodegradable cellulose filter paper without using any toxic materials or complex procedures. The temperature sensor shows a large negative temperature coefficient of resistance (TCR) in the range of −3100 ppm K−1 to −4900 ppm K−1, which is comparable to available commercial temperature sensors, and an activation energy of 34.85 meV. The IR sensor shows a high responsivity of 58.5 V W−1, which is greater than reported IR sensors with similar dimensions. A detailed study of the conduction mechanism in MWCNTs with temperature and the photo response with IR illumination was done and it was found that the conduction is due to thermally assisted hopping in band tails and the photo response is bolometric in nature. The successful fabrication of these sensors on cellulose filter paper with a comparable performance to existing components indicates that it is possible to fabricate high-performance electronics using low-cost, eco-friendly materials without the need for expensive clean-room processing techniques or harmful chemicals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.