Abstract

Wasted wool fabrics are a kind of textile waste source and the upcycle of them can not only benefit the environmental protection, but also turn waste into treasure by developing other potential applications. In this work, ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) was used as a green solvent to upcycle wasted wool fabrics into a wool keratin (WK)/IL/polyacrylonitrile (PAN) composite nanofibrous membrane with good antibacterial and high moisture permeability through electrospinning. The morphology and structure of the regenerated nanofibrous membrane were characterized by Scanning Electronic Microscopy (SEM), Energy Dispersive Spectrometer (EDS), Fourier Transfer Infrared Spectroscopy (FTIR). The antibacterial test demonstrates that it has 89.21% inhibition rate against E. coli, and 60.70% against S. aureus. Furthermore, the keratin containing in the membrane can effectively improve the hydrophilic property of it, as Moisture Management Test (MMT) indicates that it performs an excellent wetting performance and water transport property. In addition, IL is supposed to be recycled from the composite membrane through immersing in distilled water, which makes the fabrication process green and sustainable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.