Abstract

Bacterial populations whose growth depends on the cooperative production of public goods are usually threatened by the rise of cheaters that do not contribute but just consume the common resource. Minimizing cheater invasions appears then as a necessary mechanism to maintain these populations. However, that invasions result instead in the persistence of cooperation is a prospect that has yet remained largely unexplored. Here, we show that the demographic collapse induced by cheaters in the population can actually contribute to the rescue of cooperation, in a clear illustration of how ecology and evolution can influence each other. The effect is made possible by the interplay between spatial constraints and the essentiality of the shared resource. We validate this result by carefully combining theory and experiments, with the engineering of a synthetic bacterial community in which the public compound allows survival to a lethal stress. The characterization of the experimental system identifies additional factors that can matter, like the impact of the lag phase on the tolerance to stress, or the appearance of spontaneous mutants. Our work explains the unanticipated dynamics that eco-evolutionary feedbacks can generate in microbial communities, feedbacks that reveal fundamental for the adaptive change of ecosystems at all scales.

Highlights

  • In many bacterial populations, resources produced by an individual may benefit other members of the population

  • We show in this work how such connection can direct to the unexpected consequence that the population collapse linked to cheater invasions eventually generates conditions that contribute to the revival of cooperators

  • We first introduced a stylized in silico model considering an initial finite population of agents –representing bacteria– with a given frequency of cooperators and cheaters (Materials and Methods)

Read more

Summary

Introduction

Resources produced by an individual may benefit other members of the population. We show how cheating can instead induce the continuance of cooperation, a prospect that has yet remained largely unexplored[6] This is linked to the synergistic effects of spatial structure and eco-evolutionary feedbacks, that impact in a nonintuitive manner on the dilemma[12,13]. We show in this work how such connection can direct to the unexpected consequence that the population collapse linked to cheater invasions eventually generates conditions that contribute to the revival of cooperators. This represents, more broadly, an example of the effects that both ecological and evolutionary forces can generate on community dynamics when acting on similar scales[26,27]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.