Abstract

Abstract Climate change strongly affects the range of ochotonids (Order Lagomorpha), fragmenting their habitats and restricting them to ecological islands. The present paper discusses the adaptations of extinct ochotonids to insular stressors, providing baseline data for the management and conservation of extant species. For this purpose, the body mass (BM) and locomotion of the endemic Prolagus apricenicus and Prolagus imperialis from the Gargano palaeo archipelago (Late Miocene) were assessed. P. apricenicus was a small-sized ochotonid (BM 150–250 g) and P. imperialis was probably the largest Prolagus that ever lived (BM 500–750 g). The eco-evolutionary BM dynamics suggest a targeted ecological niche for P. apricenicus, whereas the BM of P. imperialis rose abruptly as a result of growth-rate increase. In both species, the locomotion was stable and less cursorial, with leaping skills, resembling extant rocky ochotonids. Convergent eco-evolutionary patterns are observed in extinct insular ochotonids, concerning an increase of BM (giants), more efficient chewing, less cursorial and more stable locomotion, leaping skills, as well as a slower life history (longer lifespan). Such adaptations are triggered by the specific selective pressures of insular regimes. The present results point to the long-lasting insular Prolagus species as reference taxa for addressing the management of extant rocky ochotonids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call