Abstract
Nearly half large dams of China have been built in the Yangtze River Basin (YRB) and the eco-environmental impacts of existing dams remain elusive. Here we present a spatio-temporal approach to measuring the eco-environmental impacts of dams and its long-term changes. We also develop a new metric, the dam eco-environmental effect index (DEEI), that quickly identifies the eco-environmental impacts on dams over 36 years. Underlying the analysis are the revised universal soil loss equation (RUSLE), the generalized boosted regression modeling (GBM), the generalized linear model (GLM), stepwise multiple regression, trend analysis, soil erosion and sediment yield balance equation, and sample entropy used to identify the eco-environmental impacts of dams on yearly timescales. We find that the accumulated negative environmental effects of constructed dams have increased significantly and has led to large-scale hydrophysical and human health risk affecting the Yangtze River Basins downstream (i.e. Jianghan-Lushui-Northeastern Hubei, Dongting Lake District, Yichang-Jianli, and Qingjiang) and reservoir areas (i.e. Wanxian-Miaohe, Miaohe-Huanglingmiao, and Huanglingmiao-Yichang). We also provide observational evidence that dam construction has reduced the complexity of short-term (1–12 months) in runoff and sediment loads. This spatial pattern seems to reflect a filtering effect of the dams on the temporal and spatial patterns of runoff and sediment. Three Gorges Dam (TGD) has a significant impact on the complexity of the runoff and sediment loads in the mainstream of the Yangtze River. This enhanced impact is attributed to the high trapping efficiency of the dam and its associated large reservoir. This assessment may underestimate the cumulative effect of the dam because it does not consider the future effects of the planned dam. Our study provides a quantitative methodology for finding the relative change rate of eco-environmental impact on dams, which is the first step towards addressing the extent, process, and magnitude of the dam-induced effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.