Abstract
Decarbonization of building heating is the key to carbon neutrality. Heat pumps have great potential to replace non-renewable heating devices, thus creating economic and renewable heating systems. To overcome the application challenges of conventional heat pumps (HP), a novel dual-source heat pump (DSHP) heating system and corresponding model are proposed and validated in this paper. Simulated by the validated experiment-based model, the performance of the DSHP heating system is numerically investigated by comparing with different systems in various regions. The results show that the DSHP system has higher seasonal performance factors and near-zero defrosting costs when compared to the conventional HP heating system in different regions, resulting in 1.88%–21.53% reductions in annual heating bills and carbon emissions. Compared to the gas boiler heating system, the DSHP system can achieve 20.64%–54.36% of annual heating bill savings and 14.39%–86.09% of annual carbon reductions in selected regions. The investigation of heating characteristics and eco-economic performance of the DSHP system in different regions provided important guiding significance for the DSHP in global application, and thus contributes to achieving bill-saving and low-carbon heating and sustainable development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.