Abstract

Spillovers of viruses into human occur more frequently under warmer conditions, particularly arboviruses. The invasive tick species Haemaphysalis longicornis poses a significant public health threat due to its global expansion and its potential to carry a wide range of pathogens. We analyzed meta-transcriptomic data from 3595 adult H. longicornis ticks collected between 2016 and 2019 in 22 provinces across China, encompassing diverse ecological conditions. Generalized additive modelling revealed that climate factors exerted a stronger influence on the virome of H. longicornis compared to other ecological factors, such as ecotypes, distance to coastline, animal host, tick gender, and anti-viral immunity. We investigated the mechanistic understanding of how climate changes drive the tick virome using causality inference and emphasized its significance for public health. Our findings demonstrated that higher temperatures and lower relative humidity/precipitation contribute to variations in animal host diversity, leading to an increased diversity of tick virome, particularly the evenness of vertebrate associated viruses. This finding may explain the evolution of tick-borne viruses into generalists across multiple hosts, thereby increasing the probability of spillover events involving tick-borne pathogens. Deep learning projections indicate that the diversity of H. longicornis virome is expected to increase in 81.9% of regions under the SSP8.5 scenario from 2019-2030. Extension of surveillance should be implemented to avert the spread of tick-borne diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call