Abstract
Iron oxide nanoparticles (Fe2O3NPs) are an interested and attractive area of research as they have numerous effective environmental and biomedical applications. Herein we have reported a simple and eco-benign synthesis Fe2O3NPs using Tamarix aphylla extract. The extract of the Tamarix aphylla acts both as a reducing and capping agent which leads to the fast and successful eco-benign synthesis of Fe2O3NPs.UV/Vis spectroscopy, XRD, EDX, SEM and TEM techniques were used to characterize and explore different features of Fe2O3NPs. UV/Vis studies showed asharppeak at 390 nm due to surface plasmon resonance absorption of Fe2O3NPs. XRD studies indicated that Fe2O3NPs were crystalline in nature. Structural features, elemental composition and geometry of Fe2O3NPswere confirmed by SEM, EDX and TEM. The as synthesized Fe2O3NPs showed efficient efficacy to degrade 100% of Methylene blue (MB) dye by 4 mg/25 ml MB and revealed 90% scavenging of the more stable DPPH free radical(1 mg/ml). Furthermore, Fe2O3NPs showed excellent antimicrobial activity against pathogenic multidrug resistant bacterial strains. The results of the present study explored the potential reducing, capping property of Tamarix aphylla extract, photocatalytic and biomedical applications of eco-benignly synthesized Fe2O3NPs which could be an alternative material for effective remediation of lethal organic pollutants and microbes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry and Photobiology B: Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.