Abstract

The connected vehicle eco-approach and departure (EAD) application for signalized intersections has been widely studied and is deemed to be effective in terms of reducing energy consumption and both greenhouse gas and other criteria pollutant emissions. Prior studies have shown that tangible environmental benefits can be gained by communicating the driver with the signal phase and timing (SPaT) information of the upcoming traffic signals with fixed time control to the driver. However, similar applications to actuated signals pose a significant challenge due to their randomness to some extent caused by vehicle actuation. Based on the framework previously developed by the authors, a real-world testing has been conducted along the El Camino Real corridor in Palo Alto, CA, USA, to evaluate the system performance in terms of energy savings and emissions reduction. Strategies and algorithms are designed to be adaptive to the dynamic uncertainty for actuated signal and real-world traffic. It turns out that the proposed EAD system can save 6% energy for the trip segments when activated within DSRC ranges and 2% energy for all trips. The proposed system can also reduce 7% of CO, 18% of HC, and 13% of NOx for all trips. Those results are compatible with the simulation results and validate the previously developed EAD framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.