Abstract

Currently, Saphenous vein (SV) and internal thoracic artery (ITA) are still the most common graft materials in Coronary Artery Bypass Grafting (CABG) whereas SV graft have a lower long-term patency than ITA. Vascular smooth muscle cells (VSMCs) phenotype conversion, proliferation and migration may play a key role in mechanism of vein graft restenosis. To explore differential gene expression profile in VSMCs from SV and ITA will help to further elucidate the mechanism of VSMCs in vein graft restenosis after CABG and to provide new thread of gene therapy.MethodsVSMCs from paired SV and ITA were cultured for experiments of Affymetrix microarrays and verification using FQ RT-PCR, while the database for annotation, visualization and integrated discovery bioinformatics resources (DAVID 2.0) was utilized for bioinformatics analysis of differential gene expression profile between SV VSMCs and ITA VSMCs. RNA of tunica media from SV and ITA segments were extracted for FQ RT-PCR to display differential expression of PLATResults54,613 probe sets were examined by gene microarray experiments. In SV VSMCs, 1,075 genes were up-regulated and 406 of them were higher than two-fold; 1,399 genes were down-regulated and 424 of them were lower than two-fold as compare with ITA VSMCs.14 ECM-related genes differentially expressed were verificated and listed as following: COL4A4, COL11A1, FN1, TNC, THBS, FBLN, MMP3, MMP9, TIMP3, WNT5A, SGCD were higher whereas COL14A1, ELN, PLAT lower in SV VSMCs than ITA VSMCs. In addition, PLAT was lower in tunica media from SV segments than ITA.ConclusionVSMCs from SV and ITA have distinct phenotypes characteristics. Both promoting and inhibiting migration ECM-related genes were higher in VSMCs from SV as compared with ITA, suggesting that VSMCs from SV have more potential migrating capability whereas less PLAT both in SV VSMCs and vascular tissue,implying that SV may prone to be restenosis after CABG.

Highlights

  • Saphenous vein (SV) and internal thoracic artery (ITA) are still the most common graft materials in Coronary Artery Bypass Grafting (CABG) whereas SV graft have a lower long-term patency than ITA

  • Both Vascular smooth muscle cells (VSMCs) from SV and ITA exhibited intense responsibility to FBS and PDGF-BB with dramatic proliferation reacting to stimuli.(Figure 4) In SV VSMCs, the data detected after 96 h and 144 h between PDGF-BB and DMEM/F12 was statistically significant. (P < 0.05 or P < 0.01)

  • Microarray gene expression profiling and bioinformatics analysis 54,613 probe sets were examined by gene microarray experiments and the differential gene expression profile of VSMCs from SV and ITA was processed for further bioinformatics analysis

Read more

Summary

Introduction

Saphenous vein (SV) and internal thoracic artery (ITA) are still the most common graft materials in Coronary Artery Bypass Grafting (CABG) whereas SV graft have a lower long-term patency than ITA. Vascular smooth muscle cells (VSMCs) phenotype conversion, proliferation and migration may play a key role in mechanism of vein graft restenosis. Saphenous vein (SV) and internal thoracic artery (ITA) are routinely used grafts in CABG. Vascular smooth muscle cells (VSMCs) phenotype conversion, proliferation and migration play a significant role in the complex pathological process and influence the long-term patency of venous grafts [4]. VSMCs from SV and ITA may have distinct intrinsic properties as well, thereby determining patency rates of grafted vessels

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.