Abstract

Regulation of membrane-type 1 matrix metalloproteinase (MT1-MMP) by different extracellular matrices (ECMs) on human endothelial cells (ECs) has been investigated. First, MT1-MMP is found at the intercellular contacts of confluent ECs grown on β1 integrin–dependent matrix such as type 1 collagen (COL I), fibronectin (FN), or fibrinogen (FG), but not on gelatin (GEL) or vitronectin (VN). The novel localization of MT1-MMP at cell–cell contacts is assessed by confocal videomicroscopy of MT1-MMP-GFP–transfected ECs. Moreover, MT1-MMP colocalizes with β1 integrins at the intercellular contacts, whereas it is preferentially found with αvβ3 integrin at motility-associated structures on migrating ECs. In addition, clustered integrins recruit MT1-MMP and neutralizing anti-β1 or anti-αv integrin mAb displace MT1-MMP from its specific sites, pointing to a biochemical association that is finally demonstrated by coimmunoprecipitation assays. On the other hand, COL I, FN, or FG up-regulate cell surface MT1-MMP on confluent ECs by an impairment of its internalization, whereas expression and internalization are not modified on GEL or VN. In addition, MT1-MMP activity is diminished in confluent ECs on COL I, FN, or FG. Finally, MT1-MMP participates and cooperates with β1 and αvβ3 integrins in the migration of ECs on different ECM. These data show a novel mechanism by which ECM regulates MT1-MMP association with β1 or αvβ3 integrins at distinct cellular compartments, thus modulating its internalization, activity, and function on human ECs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call