Abstract

We present disk wind model calculations for the broad emission lines seen in the ultraviolet spectra of the X-ray binary Hercules X-1. Recent HST/STIS observations of these lines suggest that they are kinematically linked to the orbital motion of the neutron star and exhibit a red-shifted to blue-shifted evolution of the line shape during the progression of the eclipse from ingress to egress which is indicative of disk emission. Furthermore, these lines are single-peaked which implies that they may be formed in a disk wind similar to those we have proposed as producing the broad emission lines seen in the UV spectra of active galactic nuclei. We compute line profiles as a function of eclipse phase and compare them to the observed line profiles. Various effects may modify the appearance of the lines including resonant scattering in the wind itself, self-shadowing of the warped disk from the central continuum, and self-obscuration of parts of the disk along the observer's line-of-sight. These latter two effects can cause orbital and precessional phase dependent variations in the emission lines. Hence, examination of the line profiles as a function of these phases can, in principle, provide additional information on the characteristics of the disk warp.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.