Abstract

An eclectic combination of cluster, perturbation, and linear expansions often provides the most compact mathematical descriptions of molecular electronic wave functions. A general theory is introduced to define a hierarchy of systematic electron-correlation approximations that use two or three of these expansion types. It encompasses coupled-cluster and equation-of-motion coupled-cluster methods and generates various perturbation corrections thereto, which, in some instances, reduce to the standard many-body perturbation methods. Some of these methods are also equipped with the ability to use basis functions of interelectronic distances via the so-called R12 and F12 schemes. Two computer algebraic techniques are devised to dramatically expedite implementation, verification, and validation of these complex electron-correlation methods. Numerical assessments support the unmatched utility of the proposed approximations for a range of molecular problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.