Abstract
Eclat is a program for frequent item set mining, a data mining method that was originally developed for market basket analysis. Frequent item set mining aims at finding regularities in the shopping behavior of the customers of supermarkets, mail-order companies and online shops. In particular, it tries to identify sets of products that are frequently bought together. Once identified, such sets of associated products may be used to optimize the organization of the offered products on the shelves of a supermarket or the pages of a mail-order catalog or web shop, may give hints which products may conveniently be bundled, or may allow suggesting other products to customers. However, frequent item set mining may be used for a much wider variety of tasks, which share that one is interested in finding regularities between (nominal) variables in a given data set. For an overview of frequent item set mining in general and several specific algorithms (including Eclat)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Scientific Research in Computer Science, Engineering and Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.