Abstract
We present an experimental study of the Eckhaus instability and the spatial-temporal evolution of the roll structure in two-dimensional (2D) anisotropic systems. In spite of the fact that the instability in 2D systems is manifested via the nucleation of topological defects, contrary to the case of 1D systems, we find no differences in the basic instability mechanism. Longitudinal, long-wavelength modulation is reponsible for the instability, exactly as in 1D systems, and thus the stability boundary and the spatial-temporal evolution dynamics are identical for 1D and 2D roll patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.