Abstract

Animal vocalizations experience pressures from ecological conditions, but their diversification may be constrained by morphology and evolutionary history. To date, the relative contribution of these factors to acoustic diversity is unclear in most vertebrate groups. Bats constitute one of the most speciose and diverse mammal groups, and most bat species rely on vocalizations for orientation, foraging, and communication. Here, we examine echolocation calls of 207 bat species across 17 families to weigh the relative role of phylogenetic inertia, natural selection, and morphological constraints in shaping echolocation call diversity in bats. Using the large dataset, we confirm that foraging guilds, phylogenetic relationships, and forearm length account for the majority of the variation in call parameters among bats. Foraging guilds play a major role in influencing call parameters in low duty cycle bats. At the family level, the variation in call parameters is primarily explained by differences in body size and phylogenetic relationships. Path analyses indicate that phylogeny determines call output not only by their direct effect on call parameters but also by having an indirect effect via foraging guilds and body size. These results demonstrate that natural selection, phylogenetic constraint, and morphological constraint shape echolocation call divergence in bats. Our findings underscore the importance of both adaptive and non-adaptive mechanisms underlying the evolution of echolocation calls in bats. Ecology, morphology, and evolutionary history are tightly coupled; therefore, disentangling the relative strength of these components underlying acoustic diversity is a big challenge. Using a large dataset of bats, we assess the influence of phylogeny, ecology, and body size on echolocation call parameters. We conclude that ecological selection, phylogenetic constraint, and morphological constraint play a crucial role in shaping echolocation call divergence among bats. This study expands our knowledge of the relative contribution of adaptive and maladaptive mechanisms to echolocation call diversity at different taxonomic levels in bats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.