Abstract

During prey-capture attempts, many echolocating bats emit a 'terminal buzz', when pulse repetition rate is increased and pulse duration and interpulse interval are shortened. The buzz is followed by a silent interval (the post-buzz pause). We investigated whether variation in the structure of the terminal buzz, and the calls and silent periods following it, may provide information about whether the capture attempt was successful and about the size of prey detected - detail that is valuable in studies of habitat use and energetics. We studied the trawling bat Myotis daubentonii. The time between the first call of the approach phase and the end of the terminal phase was not related to prey size in the laboratory. The last portion of the terminal buzz (buzz II) was shortened or omitted during aborted capture attempts. Both in the laboratory and in the field, the mean interpulse interval immediately after the terminal buzz (post-buzz interpulse interval) was longer in successful captures than in unsuccessful attempts. In the laboratory, the post-buzz pause was longer after successful captures than for unsuccessful attempts, and the minimum frequency of the first search-phase call emitted after the buzz (Fmin) was higher than that of the last such call prior to the buzz. These effects were not apparent in field data. Both in the laboratory (85%) and in the field (74%), significant discrimination between successful and unsuccessful capture attempts was possible when the duration of the post-buzz pause, post-buzz interpulse interval and Fmin were entered into a discriminant analysis. Thus, variation in the echolocation calls of bats during prey-capture attempts can reveal substantial information about capture success and prey size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call