Abstract

Targetable echogenic liposomes (ELIP) for ultrasound enhancement of atheroma have recently been developed; however, their retention of echogenicity at physiological temperature is less than desirable. The purpose of this study was to improve ELIP stability and increase clinical potential. The approach utilized the original procedures but involved manipulation of the lipid composition by reducing the level of unsaturation of the phospholipids components to minimize the rate of loss of echogenicity. Echogenicity was measured using a 20 MHz intravascular ultrasound (IVUS) catheter and quantified (as mean gray scale values) using computer-assisted videodensitometry. The optimal preparation for retention of echogenicity stability at physiologic temperature was egg phosphatidylcholine/dipalmitoylphosphatidylcholine/dipalmitoylphos-phatidylethanolamine/dipalmitoylphosphatidylglycerol/cholesterol (27:42:8:8:15, molar percent). This preparation retained 51 +/- 3.5% of its echogenicity after 1 h at 37 degrees C, more than 5x that retained by the previously descried preparation. In this composition nearly 2/3 of the phosphosphatidylcholine is fully saturated. Such an increase in saturation is anticipated to stiffen the lipid acyl chains. The air pockets that are responsible for reflection of ultrasound waves can be assumed to be stabilized by a lipid monolayer at the interface between the air and bulk water. The increased rigidity of that monolayer is presumed to be responsible for reducing the loss of air and extending the duration of echogenic activity. The stability of this improved formulation now appears to be more than adequate for clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.