Abstract

Heart failure (HF) is a highly prevalent clinical syndrome characterized by considerable phenotypic heterogeneity. The traditional classification based on left ventricular ejection fraction (LVEF) is widely accepted by the guidelines and represents the grounds for patient enrollment in clinical trials, even though it shows several limitations. Ejection fraction (EF) is affected by preload, afterload, and contractility, it being problematic to express LV function in several conditions, such as HF with preserved EF (HFpEF), valvular heart disease, and subclinical HF, and in athletes. Over the last two decades, developments in diagnostic techniques have provided useful tools to overcome EF limitations. Strain imaging analysis (particularly global longitudinal strain (GLS)) has emerged as a useful echocardiographic technique in patients with HF, as it is able to simultaneously supply information on both systolic and diastolic functions, depending on cardiac anatomy and physiology/pathophysiology. The use of GLS has proved helpful in terms of diagnostic performance and prognostic value in several HF studies. Universally accepted cutoff values and variability across vendors remain an area to be fully explored, hence limiting routine application of this technique in clinical practice. In the present review, the current role of GLS in the diagnosis and management of patients with HF will be discussed. We describe, by critical analysis of the pros and cons, various clinical settings in HF, and how the appropriate use and interpretation of GLS can provide important clues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call