Abstract

Background: Transthoracic echocardiography (TTE) plays a fundamental role in the management of patients supported with extra-corporeal membrane oxygenation (ECMO). In light of fluctuating clinical states, serial monitoring of cardiac function is required. Formal quantification of ventricular parameters and myocardial mechanics offer benefit over qualitative assessment. The aim of this research was to compare unenhanced (UE) versus contrast-enhanced (CE) quantification of myocardial function and mechanics during ECMO in a validated ovine model.Methods: Twenty-four sheep were commenced on peripheral veno-venous ECMO. Acute smoke-induced lung injury was induced in 21 sheep (3 controls). CE-TTE with Definity using Cadence Pulse Sequencing was performed. Two readers performed image analysis with TomTec Arena. End diastolic area (EDA, cm2), end systolic area (ESA, cm2), fractional area change (FAC, %), endocardial global circumferential strain (EGCS, %), myocardial global circumferential strain (MGCS, %), endocardial rotation (ER, degrees) and global radial strain (GRD, %) were evaluated for UE-TTE and CE-TTE.Results: Full data sets are available in 22 sheep (92%). Mean CE EDA and ESA were significantly larger than in unenhanced images. Mean FAC was almost identical between the two techniques. There was no significant difference between UE and CE EGCS, MGCS and ER. There was significant difference in GRS between imaging techniques. Unenhanced inter-observer variability was from 0.48–0.70 but significantly improved to 0.71–0.89 for contrast imaging in all echocardiographic parameters.Conclusion: Semi-automated methods of myocardial function and mechanics using CE-TTE during ECMO was feasible and similar to UE-TTE for all parameters except ventricular areas and global radial strain. Addition of contrast significantly decreased inter-observer variability of all measurements.

Highlights

  • Extra corporal membrane oxygenation (ECMO) is a specialised form of pulmonary or cardiopulmonary support in critically unwell patients [1, 2, 3]

  • Patients supported with extra-corporeal membrane oxygenation (ECMO) are typically in the critical care complex and there are several adverse factors that can diminish the quality of transthoracic echocardiographic (TTE) images

  • Of the 48 sheep datasets evaluated, three were excluded due to poor endocardial tracking that resulted in negative fractional area change (FAC) values

Read more

Summary

Introduction

Extra corporal membrane oxygenation (ECMO) is a specialised form of pulmonary or cardiopulmonary support in critically unwell patients [1, 2, 3]. Sub-optimal images, which can be rendered adequate with contrast, have traditionally not been evaluated using STE due to the perception of difficulty in tracking the speckles. As such, these two advanced imaging modalities are often seen as mutually exclusive. The primary aim of this study was to compare contrast-enhanced STE parameters with those from conventional unenhanced TTE. The aim of this research was to compare unenhanced (UE) versus contrast-enhanced (CE) quantification of myocardial function and mechanics during ECMO in a validated ovine model. Conclusion: Semi-automated methods of myocardial function and mechanics using CE-TTE during ECMO was feasible and similar to UE-TTE for all parameters except ventricular areas and global radial strain. Addition of contrast significantly decreased inter-observer variability of all measurements

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call