Abstract

Among the various data-driven approaches used for RUL prediction, Recurrent Neural Networks (RNNs) have certain prima facie advantages over other approaches because the connections between internal nodes form directed cycles, thus creating internal states which enables the network to encapsulate dynamic temporal behavior and also to properly handle the noise affecting the collected signals. However, the application of traditional RNNs is limited by the difficulty of optimizing their numerous internal parameters and the significant computational effort associated with the training process. In this work, we explore the use of the Echo State Network (ESN), a relatively new type of Recurrent Neural Network (RNN). One of the main advantages of ESN is the training procedure, which is based on a simple linear regression. Unlike traditional RNNs, ESNs can be trained with fairly little computational effort, while still providing the generalization capability characteristic of RNNs. In this paper, we use Differential Evolution (DE) for the optimization of the ESN architecture for RUL prediction of a turbofan engine working under variable operating conditions. A procedure for pre-processing of the monitored signals and for identification of the onset of acceleration of degradation (i.e., the so-called elbow point in the degradation trend) will be shown. The datasets used to validate the approach have been taken from the NASA Ames Prognostics CoE Data Repository. These datasets were generated using a turbofan engine simulator, based on a detailed physical model that allows input variations of health-related parameters under variable operating conditions and records values from some specific sensor measurements. The results obtained on these data confirm the ESN’s capability to provide accurate RUL predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call