Abstract

Several ultrasonic techniques for the estimation of blood velocity, tissue motion and elasticity are based on the estimation of displacement through echo time-delay analysis. A common assumption is that tissue displacement is constant within a short observation time used for time delay estimation (TDE). The precision of TDE is mainly limited by noise sources corrupting the echo signals. In addition to electronic and quantization noise, a substantial source of TDE error is the decorrelation of echo signals because of displacement gradients within the observation time. The authors present a theoretical model that describes the mean changes of the crosscorrelation function as a function of observation time and displacement gradient. The gradient is assumed to be small and uniform within the observation time; the decorrelation introduced by the lateral and elevational displacement components is assumed to be small compared with the decorrelation caused by the axial component. The decorrelation model predicts that the expected value of the crosscorrelation function is a low-pass filtered version of the autocorrelation function (i.e., the crosscorrelation obtained without gradients). The filter is a function of the axial gradient and the observation time. This theoretical finding is corroborated experimentally. Limitations imposed by decorrelation in displacement estimation and potential uses of decorrelation in medical ultrasound are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.