Abstract

Aging leads to functional changes in the brain and decreases ability of learning and memory. Neurite outgrowth is important in learning and memory, therefore regulation of neurite outgrowth might be a candidate for treating aged brain. Echinocystic acid (EA), a pentacyclic triterpene, has shown to exert various neurological effects. However, the effect of EA on neurite outgrowth has not been studied. In this study, we examined if EA is effective on neurite outgrowth and memory in aged mice. The effect of EA on neurite outgrowth was observed by examining neurite processes of Neuro2a cells treated with EA. Western blot analysis was conducted to examine possible mechanisms. Morris water maze test was used to examine the effect of EA on learning and memory in aged mice. Immunohistochemistry was conducted to observe the effect of EA on neurite outgrowth in the hippocampus. EA was shown to induce neurite outgrowth in a concentration dependent manner without affecting cell viability. Moreover, EA treatment increased phosphorylation of c-jun N-terminal kinase (JNK) and JNK inhibitor, SP600125, blocked the effect of EA on neurite outgrowth. These results demonstrated that EA treatment promotes neurite outgrowth through the JNK signaling pathway. In in vivo experiments, EA treatment increased neurite outgrowth in aged mouse hippocampus. Moreover, EA treatment enhanced spatial learning and memory in aged mice. These results suggest that EA can be developed as a new, naturally occurring drug to treat ageing-related neurological diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.