Abstract

Quantitative analysis of electrocardiogram (ECG) signals plays a pivotal role in objectively and quantitatively assessing cardiac electrical activity. This paper presents an innovative approach for quantitative ECG signal analysis utilizing extremum energy decomposition (EED). The methodology encompasses multiple steps: acquisition of unknown ECG signal under specific time and sampling conditions, denoising of acquired ECG signals, and subsequent decomposition of denoised ECG signals into a set of extremum modal function components alongside a residual. The n extremum modal function components obtained effectively represent different frequency bands. By evaluating these n extremum modal function components, the presence and severity of abnormalities within the ECG signal can be determined. The results showcased the effectiveness of the method in accurately identifying abnormal ECG signals, and the technique demonstrated robustness against noise interference, enhancing its practical utility in clinical and diagnostic settings. This research contributes to the field of ECG analysis by offering a quantitative toolset that enhances the objectivity and accuracy of abnormality assessment in cardiac electrical activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call