Abstract

In recent years, Electrocardiogram (ECG) plays an imperative role in heart disease diagnostics, Human Computer Interface (HCI), stress and emotional states assessment, etc. In general, ECG signals affected by noises such as baseline wandering, power line interference, electromagnetic interference, and high frequency noises during data acquisition. In order to retain the ECG signal morphology, several researches have adopted using different preprocessing methods. In this work, the stroop color word test based mental stress inducement have done and ECG signals are acquired from 10 female subjects in the age range of 20 years to 25 years. We have considered the Discrete Wavelet Transform (DWT) based wavelet denoising have incorporated using different thresholding techniques to remove three major sources of noises from the acquired ECG signals namely, power line interference, baseline wandering, and high frequency noises. Three wavelet functions (db4, coif5 and sym7) and four different thresholding methods are used to denoise the noise in ECG signals. The experimental result shows the significant reduction of above considered noises and it retains the ECG signal morphology effectively. Four different performance measures were considered to select the appropriate wavelet function and thresholding rule for efficient noise removal methods such as, Signal to Interference Ratio (SIR), noise power, Percentage Root Mean Square Difference (PRD) and finally periodogramof Power Spectral Density (PSD). The experimental result shows the coif5 wavelet andrigrsurethresholding rule is optimal for unknown Signal to Noise Ratio (SNR) in the real time ECG signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.