Abstract

Biosignals often require high data transmission in real-time monitoring and visualization. Low-power techniques are always desirable for designing sustainable wireless sensor nodes. Signal compression techniques provide a promising solution in developing low-power wireless sensor nodes as it can significantly reduce the amount of data transmitted via power-demanding wireless transmission and thus greatly lower the energy consumption of sensor nodes. In this study, we develop a new approach for ECG signal compression on low-power ECG sensor nodes by leveraging sparse features of ECG signals in frequency domain. The experimental results show that our method has better compression performance which achieves the average compression ratio (CR) of 65.91 with the comparable RMSE of no more than 5% than the state-of-the-art that can achieve the CR of around 40 with the same level error rate. The promising compression performance of the proposed method provides a feasible solution to achieve ultra-low power consumption for wireless ECG sensor node design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.