Abstract

BackgroundCurrently, cardiovascular disease has become a major disease endangering human health, and the number of such patients is growing. Electrocardiogram (ECG) is an important basis for {medical doctors to diagnose the cardiovascular disease, which can truly reflect the health of the heart. In this context, the contradiction between the lack of medical resources and the surge in the number of patients has become increasingly prominent. The use of computer-aided diagnosis of cardiovascular disease has become particularly important, so the study of ECG automatic classification method has a strong practical significance.MethodsThis article proposes a new method for automatic identification and classification of ECG.We have developed a dense heart rhythm network that combines a 24-layer Deep Convolutional Neural Network (DCNN) and Bidirectional Long Short-Term Memory (BiLSTM) to deeply mine the hierarchical and time-sensitive features of ECG data. Three different sizes of convolution kernels (32, 64 and 128) are used to mine the detailed features of the ECG signal, and the original ECG is filtered using a combination of wavelet transform and median filtering to eliminate the influence of noise on the signal. A new loss function is proposed to control the fluctuation of loss during the training process, and convergence mapping of the tan function in the range of 0–1 is employed to better reflect the model training loss and correct the optimization direction in time.ResultsWe applied the dataset provided by the 2017 PhysioNet/CINC challenge for verification. The experiment adopted ten-fold cross validation,and obtained an accuracy rate of 89.3% and an F1 score of 0.891.ConclusionsThis article proposes its own method in the aspects of ECG data preprocessing, feature extraction and loss function design. Compared with the existing methods, this method improves the accuracy of automatic ECG classification and is helpful for clinical diagnosis and self-monitoring of atrial fibrillation.

Highlights

  • Cardiovascular disease has become a major disease endangering human health, and the number of such patients is growing

  • Peng Xiong uses a combination of wavelet scale adaptive threshold method and Denoising Automatic Encoder (DAE) to eliminate the influence of noise in the ECG signal, and cooperate with the Deep Neural Network (DNN) to extract features, the results show that the method shows a significant improvement in signal-to-noise ratio and root mean square error [12]

  • Our model Aiming at the characteristics of weak ECG data signal and more verbose in time series, we designed a neural network combining deep convolution and Bidirectional Long Short-Term Memory (BiLSTM) to extract features

Read more

Summary

Methods

This article proposes a new method for automatic identification and classification of ECG.We have developed a dense heart rhythm network that combines a 24-layer Deep Convolutional Neural Network (DCNN) and Bidirectional Long Short-Term Memory (BiLSTM) to deeply mine the hierarchical and time-sensitive features of ECG data. Three different sizes of convolution kernels (32, 64 and 128) are used to mine the detailed features of the ECG signal, and the original ECG is filtered using a combination of wavelet transform and median filtering to eliminate the influence of noise on the signal. A new loss function is proposed to control the fluctuation of loss during the training process, and convergence mapping of the tan function in the range of 0–1 is employed to better reflect the model training loss and correct the optimization direction in time

Conclusions
Background
Conclusion
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.