Abstract

Healthcare is one of the most rapidly expanding application areas of the Internet of Things (IoT) technology. IoT devices can be used to enable remote health monitoring of patients with chronic diseases such as cardiovascular diseases (CVD). In this paper we develop an algorithm for ECG analysis and classification for heartbeat diagnosis, and implement it on an IoT-based embedded platform. This algorithm is our proposal for a wearable ECG diagnosis device, suitable for 24-hour continuous monitoring of the patient. We use Discrete Wavelet Transform (DWT) for the ECG analysis, and a Support Vector Machine (SVM) classifier. The best classification accuracy achieved is 98.9%, for a feature vector of size 18, and 2493 support vectors. Different implementations of the algorithm on the Galileo board, help demonstrate that the computational cost is such, that the ECG analysis and classification can be performed in real-time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.