Abstract
Human Activity Recognition (HAR) has reached its new dimension with the support of Internet of Things (IoT) and Artificial Intelligence (AI). To observe human activities, motion sensors like accelerometer or gyroscope can be integrated with microcontrollers to collect all the inputs and send to the cloud with the help of IoT transceivers. These inputs give the characteristics such as, angular velocity of movements, acceleration and apply them for an effective HAR. But reaching high recognition rate with less complicated computational overhead still represents a problem in the research. To solve this aforementioned issue, this work proposes a novel ensembling of Capsule Networks (CN) and modified Gated Recurrent Units (MGRU) with Extreme Learning Machine (ELM) for an effective HAR classification based on data collected using IoT systems called Ensemble Capsule Gated (ECG)-Networks (NETS). The proposed system uses Capsule networks for spatio-feature extraction and modified (Gated Recurrent Unit) GRU for temporal feature extraction. The powerful feed forward training networks are then employed to train these features for human activity recognition. The proposed model is validated on real time IoT data and WISDM datasets. Experimental results demonstrates that proposed model achieves better results comparatively higher than existing (Deep Learning) DL models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.