Abstract
In this paper, we present an approach to improve the accuracy and reliability of ECG classification. The proposed method combines features analysis of linear and non-linear ECG dynamics. Non-linear features are represented by complexity measures of assessment of ordinal network non-stationarity. We describe the basic concept of ECG partitioning and provide an experiment on PQRST complex data. The results demonstrate that the proposed technique effectively detects abnormalities via automatic feature extraction and improves the state-of-the-art detection performance on one of the standard collections of heartbeat signals, the ECG5000 dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.