Abstract

Electrolyte abnormalities have become an increasingly important cause of arrhythmias owing to the widespread use of high-potency diuretics. Hypokalemia is one of the common complications of diuretic use. Although some studies of hypokalemia induced by furosemide as well as of potassium-deficient diets in the rat have been reported, the electrocardiographic (ECG) changes during hypokalemia in the rat are poorly understood. This study was designed to examine such changes. For this purpose, hypokalemia was induced by furosemide administration, and the diagnostic criteria for ECG manifestations of hypokalemia were determined. During hypokalemia, conduction in most parts of the heart was suppressed to an extent depending on plasma potassium concentration. Prolongation of the QT interval was also observed, which agrees with findings in humans and dogs. Furthermore, prolonged durations of the P wave and QRS complex were observed during hypokalemia in the rat. The extent of alteration of the PR interval induced by hypokalemia was less significant than that of P wave and QRS complex durations. These results suggest that the excitabilities of the myocardium in the atria and ventricles may be affected by extracellular potassium level rather than by the atrioventricular conduction system in the rat. Wave amplitude, except that of the P wave, was decreased by severe hypokalemia. These changes were not dependent on the plasma potassium concentration. Typical T wave changes observed with hypokalemia in humans and dogs did not occur in the rat. The ECG manifestations of acute hypokalemia in the rat did not include the typical T wave changes seen in species with ST-segment type ECGs; however, other ECG parameter changes occurring with hypokalemia were qualitatively similar to those in other species. These results may be useful for testing the toxicity of potassium-depleting drugs in the rat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.