Abstract

Recently, a lot of emphasis has been placed on Artificial Intelligence (AI) and Machine Learning (ML) algorithms in medicine and the healthcare industry. Cardiovascular disease (CVD), is one of the most common causes of death globally, and Electrocardiogram (ECG) is the most widely used diagnostic tool to investigate this disease. However, the analysis of ECG signals is a very difficult process. Therefore, in this work, automated classification of ECG data into five different arrhythmia classes is proposed, based on MIT-BIH dataset. Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) Deep Learning (DL) models were used. The black-box nature of these complex models imposes the need to explain their outcomes. Hence, both Permutation Feature Importance (PFI) with Gradient-Weighted Class Activation Maps (Grad-CAM) interpretability techniques were investigated. Using the K-Fold cross-validation method, the models achieved an accuracy of 97.1% and 98.5% for CNN and LSTM, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call