Abstract

This paper presents a method for electrocardiogram (ECG) beat classification based on particle swarm optimization (PSO) and radial basis function neural network (RBFNN). Six types of beats including Normal Beat, Premature Ventricular Contraction (PVC), Fusion of Ventricular and Normal Beat (F), Atrial Premature Beat (A), Right Bundle Branch Block Beat (R) and Fusion of Paced and Normal Beat (f) are obtained from the MIT-BIH arrhythmia database. Four morphological features are extracted from each beat after the preprocessing of the selected records. For classification stage of the extracted features, a RBFNN structure which is evolved by particle swarm optimization is used. Several experiments are performed over the test set and it is observed that the proposed method classifies ECG beats with a smaller size of network without making any concessions on the classification performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.