Abstract
Arrhythmias consist on electrical alterations in the heart beat control. They can be identified by means of surface ECG leads. The main goal of this work is to provide a signal classification based on ECG signal waveform in the time-frequency domain especially targeted to Ventricular Fibrillation detection. The use of a classifier based on a Boltzmann network is proposed. However, a previous signal preprocessing is also required so that the Boltzmann network is fed with the appropriate data. In this case, an R-wave detector is used; after that, the Pseudo Wigner-Ville time-frequency distribution is obtained. This distribution is used to train and test the network, which handles it as an image and thus, provides a classification. Results show the ability of the network to provide a similar or higher classification ratio compared to other algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.