Abstract

In the honey bee, Apis mellifera, the fifth larval instar is a critical period for caste differentiation. During this premetamorphic phase the hormonal milieu shows pronounced caste differences and several organs, particularly the ovaries, enter different developmental pathways leading to highly fertile queens and nearly sterile workers. Developmental profiles of total protein synthesis in larval ovaries showed marked caste differences starting with the early fifth instar. By two-dimensional electrophoresis, caste-specific patterns could be detected in the synthesis of a 29 kDa/pI 4.6 and two 24 kDa/pI 5.2-5.5. proteins (pI=isoelectric point). A marked decrease in the expression of these proteins was found to coincide with caste-specific differences in the haemolymph ecdysteroid titer. In vitro exposure of larval worker ovaries to physiological (10-7 M) concentrations of synthetic makisterone A elicited an identical response. Juvenile hormone did not affect protein synthesis patterns in larval ovaries, and also did not inhibit or reverse the ecdysteroid-induced effects. Heat shock experiments revealed that the 29 kDa/pI 4.6 ecdysteroid-regulated protein belongs to the class of small heat shock proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.