Abstract

Acute effects of the endocrine disruptor bis(tri-n-butyltin) oxide (TBTO) on molting-hormone biosynthesis and imaginal-disc development were investigated in larvae of the midge Chironomus riparius (Meigen). Ecdysteroid synthesis was measured by 24-h incubation of molting-hormone-synthesizing tissues (prothoracic glands) in vitro with or without the addition of TBTO. The amount of ecdysteroids produced was analyzed by radioimmunoassay. Developmental effects in vivo were investigated by determining the developmental phase of the genital imaginal discs before and after a 48-h exposure to TBTO in water. Sex-specific effects were found with both endpoints. Ecdysteroid synthesis was significantly reduced (analysis of variance [ANOVA], p < or = 0.005) in female larvae at all concentrations (TBTO-Sn at 50, 500, and 5,000 ng/L), whereas a significant elevation of the biosynthesis rate occurred in male larvae in the 500-ng/L treatment (ANOVA, p < or = 0.05). In vivo experiments with development of the genital imaginal disc within a 48-h exposure period revealed a significantly slower development in female larvae and a significantly faster development in male larvae (contingency tables, p < or = 0.001) at all concentrations tested (TBTO-Sn at 10, 50, 200, and 1,000 ng/L). These results partly coincided with the in vitro effects on molting-hormone synthesis. The 48-h median lethal concentration (LC50) was 25 microg/L (20-30 microg/L 95% confidence intervals). The combination of in vitro and in vivo methods has proven to be a useful approach for the detection of endocrine effects of TBTO in C. riparius at levels 2,000-fold below the LC50 value. High sensitivity and short test duration suggest that chironomids may have potential as freshwater sentinel organisms for endocrine-disrupting chemicals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call