Abstract

ABSTRACTSome mAL neurons in the male brain form the ipsilateral neurite (ILN[+]) in a manner dependent on FruBM, a male-specific transcription factor. FruBM represses robo1 transcription, allowing the ILN to form. We found that the proportion of ILN[+]-mALs in all observed single cell clones dropped from ∼90% to ∼30% by changing the heat-shock timing for clone induction from 4-5 days after egg laying (AEL) to 6-7 days AEL, suggesting that the ILN[+]-mALs are produced predominantly by young neuroblasts. Upon EcR-A knockdown, ILN[+]-mALs were produced at a high rate (∼60%), even when heat shocked at 6-7 days AEL, yet EcR-B1 knockdown reduced the proportion of ILN[+]-mALs to ∼30%. Immunoprecipitation assays in S2 cells demonstrated that EcR-A and EcR-B1 form a complex with FruBM. robo1 reporter transcription was repressed by FruBM and ecdysone counteracted FruBM. We suggest that ecdysone signaling modulates the FruBM action to produce an appropriate number of male-type neurons.

Highlights

  • It is widely thought that the sex-determination mechanism is distinctly different between vertebrates and insects; in vertebrates, systemic androgens and estrogens primarily determine the sex of an entire body (Sekido and Lovell-Badge, 2009), whereas in insects, every cell adopts a sexual fate according to its own chromosomal composition, without any involvement of androgens and estrogens (Salz, 2011)

  • EcR is a genetic modifier of fru In searches for genes that interact with fru, we took advantage of a visible phenotype induced by overexpression of the normal form of FruB in the compound eye (Goto et al, 2011)

  • The EcR mutant heterozygosity induced only a moderate roughness of the compound eye (Fig. 1B,C), which cannot explain the observed suppression of FruB-induced eye phenotypes by a mutant copy of EcR, suggesting that EcR genetically interacts with fru, at least when FruB is ectopically expressed in the eye

Read more

Summary

Introduction

It is widely thought that the sex-determination mechanism is distinctly different between vertebrates and insects; in vertebrates, systemic androgens and estrogens primarily determine the sex of an entire body (Sekido and Lovell-Badge, 2009), whereas in insects, every cell adopts a sexual fate according to its own chromosomal composition, without any involvement of androgens and estrogens (Salz, 2011). The major components of steroids that induce molting are systemic α-ecdysone, synthesized in the prothoracic gland (Karlson, 1996), and its derivative, 20-hydroxyecdysone Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, 980-8577, Japan. Ecdysones bind to a heterodimeric nuclear receptor composed of EcR and Ultraspiracle (Usp) proteins, thereby regulating the transcription of downstream genes that are hierarchically ordered to orchestrate a complex series of biological events, leading to molting (Hill et al, 2013). The EcR subunit has three isoforms, EcR-A, EcR-B1 and EcR-B2, each with distinct roles and expression patterns (Hara et al, 2013; Hill et al, 2013; Yamanaka et al, 2013)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.