Abstract

Recent solutions to crowd counting problems have already achieved promising performance across various benchmarks. However, applying these approaches to real-world applications is still challenging, because they are computation intensive and lack the flexibility to meet various resource budgets. In this article, we propose an efficient crowd counting neural architecture search (ECCNAS) framework to search efficient crowd counting network structures, which can fill this research gap. A novel search from pre-trained strategy enables our cross-task NAS to explore the significantly large and flexible search space with less search time and get more proper network structures. Moreover, our well-designed search space can intrinsically provide candidate neural network structures with high performance and efficiency. In order to search network structures according to hardwares with different computational performance, we develop a novel latency cost estimation algorithm in our ECCNAS. Experiments show our searched models get an excellent trade-off between computational complexity and accuracy and have the potential to deploy in practical scenarios with various resource budgets. We reduce the computational cost, in terms of multiply-and-accumulate (MACs), by up to 96% with comparable accuracy. And we further designed experiments to validate the efficiency and the stability improvement of our proposed search from pre-trained strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.