Abstract

The flow field inside a whirling annular seal operating at a Reynolds number of 24,000 and a Taylor number of 6600 has been measured using a 3-D laser Doppler anemometer system. Two eccentricity ratios were considered, 0.10 and 0.50. The seal has a diameter of 164 mm, is 37.3 mm long, and has a clearance of 1.27 mm. The rotor was mounted eccentrically on the shaft such that the whirl ratio is 1.0 and the rotor follows a circular orbit. The mean axial velocity is not uniform around the circumference of the seal; near the inlet a region characterized by high velocity of the seal. By the exit, another region of high axial velocity is not uniform around the circumference of the seal; near the inlet a region characterized by high velocity of the seal. By the exit, another region of high axial velocity has developed, this time on the suction side of the seal. The magnitude and azimuthal distance of the migration increased with increasing whirl amplitude (eccentricity). Throughout the seal length, the azimuthal mean velocity varied inversely with the mean axial velocity. Increasing the whirl amplitude did not increase the magnitude of the azimuthal velocity at the seal exit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call