Abstract

ABSTRACT We simulate the evolution of eccentric binary systems in the frame of the grazing envelope evolution (GEE) channel for the formation of Type IIb supernovae (SNe IIb), and find that extra mass removal by jets increases the parameter space for the formation of SNe IIb in this channel. To explore the role of eccentricity and the extra mass removal by jets, we use the stellar evolutionary code mesa binary. The initial primary and secondary masses are M1, i = 15 and M2, i = 2.5 M⊙. We examine initial semimajor axes of 600–1000 R⊙, and eccentricities of e = 0–0.9. Both Roche lobe overflow (RLOF) and mass removal by jets, followed by a wind, leave a hydrogen mass in the exploding star of MH, f ≈ 0.05 M⊙, compatible with an SN IIb progenitor. When the initial orbit is not circular, the final orbit might have a very high eccentricity. In many cases, with and without the extra mass removal by jets, the system can enter a common envelope evolution (CEE) phase, and then gets out from it. For some ranges of eccentricities, the jets are more efficient in preventing the CEE. Despite the large uncertainties, extra mass removal by jets substantially increases the likelihood of the system to get out from a CEE. This strengthens earlier conclusions for circular orbits. In some cases, RLOF alone, without mass removal by jets, can form SN IIb progenitors. We estimate that the extra mass removal by jets in the GEE channel increases the number of progenitors relative to that by RLOF alone by about a factor of 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.