Abstract
Crescent-shaped structures in transition disks hold the key to studying the putative companions to the central stars. The dust dynamics, especially that of different grain sizes, is important to understanding the role of pressure bumps in planet formation. In this work, we present deep dust continuum observation with high resolution toward the Oph IRS 48 system. For the first time, we are able to significantly trace and detect emission along 95% of the ring crossing the crescent-shaped structure. The ring is highly eccentric with an eccentricity of 0.27. The flux density contrast between the peak of the flux and its counterpart along the ring is ∼270. In addition, we detect a compact emission toward the central star. If the emission is an inner circumstellar disk inside the cavity, it has a radius of at most a couple of astronomical units with a dust mass of 1.5 × 10−8 M ⊙, or 0.005 M ⊕. We also discuss the implications of the potential eccentric orbit on the proper motion of the crescent, the putative secondary companion, and the asymmetry in velocity maps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.