Abstract

In this paper we study the effects of the presence of an internal transport barrier (ITB) on the current drive efficiency and power deposition profiles in the case of electron cyclotron waves interacting with an extended tail generated by lower hybrid (LH) waves. We study the subject by numerically solving the Fokker–Planck equation, with temperature and density profiles corrected along the time evolution at each collision time, based on the actual time-evolving electron distribution function. The results obtained show that the LH and electron cyclotron (EC) power absorption profiles and the current driven by the combined action of both types of waves are weakly dependent on the depth of the ITB, slightly more dependent on the level of magnetic turbulence and much more dependent on the level of EC wave power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call