Abstract

Epstein-Barr virus-associated gastric carcinoma (EBVaGC) is characterized by the clonal growth of EBV-infected stomach epithelial cells. It has been reported that N6-methyladenosine (m6A) methylation can regulate the splicing, expression, decay and translation of mRNAs. Wilms' tumor 1-associating protein (WTAP) is an m6A “writer” with methyltransferase activity. An m6A RNA methylation quantification kit and immunofluorescence (IF) showed that the m6A total RNA methylation level of the Epstein-Barr virus-negative gastric carcinoma (EBVnGC) cell line (SGC7901) was higher than that in the EBVaGC cell line (GT38). To investigate the underlying mechanism of the downregulated expression of m6A RNA methylation, we analyzed the expression of WTAP. The results showed that the expression of WTAP protein in EBVaGC cell lines was significantly lower than that in EBVnGC cell lines according to western blotting and IF. Through plasmid overexpression and RNA interference technology, we further found that EBV-encoded small RNA1 (EBER1) could downregulate WTAP expression by activating the NF-κB signaling pathway. In addition, WTAP could increase proliferation and inhibit migration in gastric carcinoma cell lines. In summary, EBER1 of EBV potentially regulated WTAP by affecting the NF-κB signaling pathway and WTAP further affected cell proliferation and migration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call